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Outline

* Introduction to Inverse Theory:

 Forward and inverse problems
* Iterative solution: LSQ and damped LSQ
* Generalized inverse

* Inversion of Receiver Functions:
e Method of Ammon et al. (1990).
e The non-uniqueness problem.

e Case Studies in Spain:

 Ebre basin (Julia et al., 1998)
e Neogene Volcanic Zone (Julia et al., 2005)



Forward Problem / Inverse Problem

 Seismic location:
o Data: travel times h 4

e Unknowns: hypocentral
coordinates and origin time. D
e A priori information: station
locations and propagating
medium velocities. t=t, + DiN
 Forward problem:
* Predict travel times from known hypocentral location and
origin time.
* Inverse problem:

e QObtain hypocentral location and origin time from observed
travel times.




Setting up the (forward) problem

We define a vector of observations d and a vector of
parameters m as:

d=(t,t,,....t)" m = (ty,Xq,Y0,Zo)"
so that
d = F(m)
where F,(m) is
t =t + (1/V) [(XiXo )+ (YiYo)*+(2-20)] "

Inverse theory provides means for finding an operator
F-1(d), so that
m = F-1(d)



Iterative solution

The forward problem for seismic location is non-linear.
An approach is to turn it linear by doing a Taylor expan-
sion around a trial solution m,

d = F(mg) + VF|,, -(m-my)
and drop 2"4 and higher order terms, so that
Ad = G-Am
Where Ad=d-F(m,), Am=m-m,, and

(ot Jot, ot lox, otfay, ot,lozg )
G — VFlmO — . . . .

\~ 7

If we can determine G-', then m._, = m+Am,



Classifying Inverse Problems
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The (linear) vector function d=F(m) maps the parameter
space into a subspace of the data space.

The ability of establishing an inverse mapping m=F-1(d)
depends on the details of the forward mapping.



|deal case Overdetermined case

\/

Each vector d relates to one There is no exact solution, so
and only one vector m. we must choose one that is
close enough.

C

Underdetermined case Mixed-determined case

/D
.

There are multiple solutions. There are no exact solutions

We must pick one. and many that are equally
close.

Gl



Least squares solutions

In order to define “close” in the data space we need to
iIntroduce a metric. A popular choice is the L, norm,
where the “distance” E between vectors is

E = (d-F(m))’(d-F(m))
The “closest” solution is obtained by minimizing E and is
given by
G'1=[G'G]'GT
To choose among the multiple solutions that are equally
“close” we pick the one that is minimum length

E = (d-F(m))'(d-F(m)) + 92 (m'm)

This is called the “damped least squares” solution and is
given by
G1=[GTG+I)? I''GT



Iterative least squares solution

The figure below gives a graphical illustration of how
iterative least squares works:
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Generalized Inverse Solution (l)

Another way of obtaining G-' is based on the singular
value decomposition (SVD) of matrix G.

It can be shown that, in general, any matrix G can be
decomposed according to

G=UAVT
Where U = [u,,...,uy] is a base in the data space, V=[v,,
...,Vy] I1s a base in the parameter space, and Aisa N x M

matrix given by
A= {o OJ

where Ap is a pxp diagonal matrix, with p < M. The diago-
nal values A, are called the singular values.



Generalized Inverse Solution (ll)

If we define V=[V,V,] and U=[Up,U,], we can write that
so that

The difficult part is to choose a value for p, as singular
values can be small but NOT necessarily zero. Options

are.

1) We choose M1 = M(A2+92) 1. Then the SVD inverse is
the damped least squares solution.

2) We choose A1 = 0, for A small. Then the SVD inverse
Is called generalized inverse or natural solution.



Inversion of Ammon et al. (1990)

The inversion scheme developed by Ammon et al. (1990)
is based on the “jumping” version of the iterative LSQ
solution:

« Creeping
d = F(m)
d = F(mg) + VF|, (Mm-my)
Oy = VF|, o0 Om
* Jumping
d+ VF| ., m,=F(m,) + VF| ,m
Ad + VF| .o mg = VF| o m
« LSQ Norm
E = |Ad - VF|po (m - mp)| |2



Over-parameterization & regularization

Velocity models are over-parameterized through a stack
of many thin layers of constant thickness and unknown

S-velocity. A smoothness constrain is needed to stabilize
the inversion.

 octy (kms)
o T Ad + VFmy=VF| ,m
: O0=0Dm
Tt ] L
§ 0 1-2 1 m,
- Dm= 1-2 1 m,
-

E =l Ad - VF (m-m) ||* + o® || Dm ||



Choosing the smoothness parameter

To determine the smoothness parameter o a “preliminary”
inversion is performed and a trade-off curve is built from the
RMS error and the model roughness.

Smoothness/Waveform Fit Trade-off
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A value for o is chose, for instance, from the noise level from
the transverse RF.



The non-uniqueness problem

Ammon et al. (1990) showed that T
the modeling of receiver function ]
waveforms is non-unique.
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The perturbation scheme

P Velocity (km/s)

V |

Many ‘starting’ models are
obtained by perturbing an
initial model.

The perturbation scheme
iIncludes:

* A cubic perturbation
(up to a max value)

« Arandom perturbation
(up to a max %)

Velocities above a cut-off
value are not cubically
perturbed.



Prepare
Signal

v

Create Initial
Model

|

Choose
Smoothness
Weight

!

Inversion
“Search”
(manyinv)

|

Assess the
Results

snglinv
or
smthinv

SUMMARIZING:

The inversion scheme proposed by
Ammon et al. (1990) for the model-
Ing of receiver functions is:

1) Construct an initial model with a
stack of many thin layers.

2) Determine the smoothness para-
meter through a “preliminary”
Inversion.

3) Investigate the multiplicity of
solutions by perturbing the initial
model into many starting models.

4) Choose a model from a priori and
independent information.



The receiver structure of the Ebre Basin
(Julia et al., BSSA, 1998)
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It's an foreland basin that
formed during the Alpine

orogeny.
Filled with deposits from
the adjacent mountain
ranges.

Highly non-uniform on
the edges.

Highly uniform along the
central axis.



Computing receiver e
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Receiver functions were computed \E}},»:j
from short-period recordings using R

the “water-level” method.
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The starting model

The starting model was taken from the P-wave velocity
model that the Catalan Geological Survey used to locate

earthquakes.

{ ] B
~'II?IIIIIIIIIIi‘IIII|||||!|||'-
b L ' 0 04 —
5 | (a) | J f..'ll[l’.llllllTll’!lll]f!.lll
| AR I (o
i S | -1 I S | .
: | ) fl ;\ |
3 il B ;
3t | JE b & e JV N e oa
{ i R Y TATA N 3"&? | 3
i e R A
: _ _ . '- ]
_J} lllll 111 :1111111111111;1111i
. ) g 1] it
;J.'_lnllmw.,lnuluuLJJL_Q] ' ‘

| : g lime [se]

Pty



Smoothness and non-uniqueness

A smoothness parameter of
0.2 was chosen from the

noise-level. |
The resulting velocity models
grouped into 4 families.

15 TR |
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What do receiver functions constrain?
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Seismic signature of intra-crustal magmatic

intrusions in the Eastern Betics
(Julia et al., GRL, 2005)

33 * Bounded by the Palo-
mares and Alhama de

Murcia faults.

— 38  « Postulated as a struc-
turally distinctive block.

« Characterized by high
heat-flow values.

* Widespread strike-slip
| . faulting.

| I w1 4 * Neogene volcanism

a i ! . (2.6 - 2.8 Ma).

T— 37




hk-stacking
results

« Shallow depth for the
interface, a bit over
~20 km.

* Very large Vp/Vs ratio,
~1.90 (o0 ~0.31)

« Consistent with active-
source profiling? (Vp
~6.3 km/s, h=~23 km)

SRGAANR . * Or is there something

1 [ q else going on?
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What does a large Vp/Vs ratio mean?

* The upper crust is made
of granites and gneisses
(0.24 < 6<0.20).

 The lower crust is
generally more mafic
(0.26 < 6 <0.29).

« Large Vp/Vs (Poisson’s)
usually explained by

e Mafic underplate

e Fusio parcial

After Chwistensen (1996)
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What do the inversion models reveal?
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Summarizing ...

Receiver function inversions are highly non-
unique.

What receiver functions constrain are:
* Velocity contrasts across discontinuities
« S-P travel times between the surface and the
discontinuity.
The scheme of Ammon et al. (1990) uses a
stack of thin layers and requires smoothness
constraints.

Independent a priori information is necessary
to choose among many competing models.



