Receiver Function Inversion

Advanced Studies Institute on Seismological Research

Kuwait City, Kuwait - January 19-22, 2013

Jordi Julià

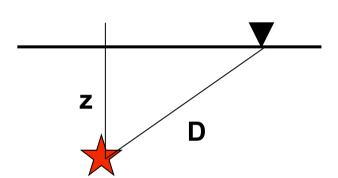
Universidade Federal do Rio Grande do Norte, Brasil

Outline

- Introduction to Inverse Theory:
 - Forward and inverse problems
 - Iterative solution: LSQ and damped LSQ
 - Generalized inverse
- Inversion of Receiver Functions:
 - Method of Ammon et al. (1990).
 - The non-uniqueness problem.
- Case Studies in Spain:
 - Ebre basin (Julià et al., 1998)
 - Neogene Volcanic Zone (Julià et al., 2005)

Forward Problem / Inverse Problem

- Seismic location:
 - Data: travel times
 - Unknowns: hypocentral coordinates and origin time.
 - A priori information: station locations and propagating medium velocities.



$$t_i = t_0 + D_i/V$$

- Forward problem:
 - Predict travel times from known hypocentral location and origin time.
- Inverse problem:
 - Obtain hypocentral location and origin time from observed travel times.

Setting up the (forward) problem

We define a vector of observations **d** and a vector of parameters **m** as:

$$\mathbf{d} = (t_1, t_2, ..., t_N)^T$$
 $\mathbf{m} = (t_0, x_0, y_0, z_0)^T$

so that

$$d = F(m)$$

where $F_i(\mathbf{m})$ is

$$t_i = t_0 + (1/v) [(x_i-x_0)^2 + (y_i-y_0)^2 + (z_i-z_0)^2]^{1/2}$$

Inverse theory provides means for finding an operator **F**⁻¹(**d**), so that

$$\mathbf{m} = \mathbf{F}^{-1}(\mathbf{d})$$

Iterative solution

The forward problem for seismic location is non-linear. An approach is to turn it linear by doing a Taylor expansion around a trial solution \mathbf{m}_0

$$\mathbf{d} \approx \mathbf{F}(\mathbf{m}_0) + \nabla \mathbf{F}|_{\mathbf{m}_0} \cdot (\mathbf{m} - \mathbf{m}_0)$$

and drop 2nd and higher order terms, so that

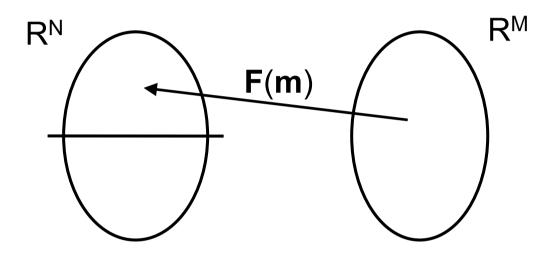
$$\Delta d = G \cdot \Delta m$$

Where $\Delta \mathbf{d} = \mathbf{d} - \mathbf{F}(\mathbf{m}_0)$, $\Delta \mathbf{m} = \mathbf{m} - \mathbf{m}_0$, and

$$\mathbf{G} = \nabla \mathbf{F}|_{\mathbf{m}0} = \begin{bmatrix} \partial t_1/\partial t_0 & \partial t_1/\partial x_0 & \partial t_1/\partial y_0 & \partial t_1/\partial z_0 \\ \vdots & \vdots & \vdots & \vdots \\ \partial t_N/\partial t_0 & \partial t_N/\partial x_0 & \partial t_N/\partial y_0 & \partial t_N/\partial z_0 \end{bmatrix}$$

If we can determine G^{-1} , then $\mathbf{m}_{i+1} = \mathbf{m}_i + \Delta \mathbf{m}_i$

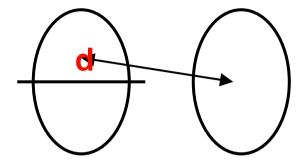
Classifying Inverse Problems



The (linear) vector function $\mathbf{d}=\mathbf{F}(\mathbf{m})$ maps the parameter space into a subspace of the data space.

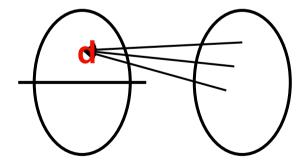
The ability of establishing an inverse mapping $\mathbf{m} = \mathbf{F}^{-1}(\mathbf{d})$ depends on the details of the forward mapping.

Ideal case



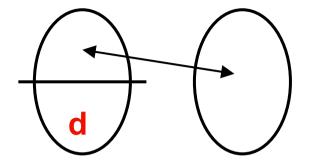
Each vector **d** relates to one and only one vector **m**.

Underdetermined case



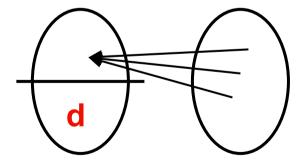
There are multiple solutions. We must pick one.

Overdetermined case



There is no exact solution, so we must choose one that is close enough.

Mixed-determined case



There are no exact solutions and many that are equally close.

Least squares solutions

In order to define "close" in the data space we need to introduce a metric. A popular choice is the L₂ norm, where the "distance" E between vectors is

$$\mathsf{E} = (\mathsf{d}\text{-}\mathsf{F}(\mathsf{m}))^{\mathsf{T}}(\mathsf{d}\text{-}\mathsf{F}(\mathsf{m}))$$

The "closest" solution is obtained by minimizing E and is given by

$$G^{-1} = [G^TG]^{-1}G^T$$

To choose among the multiple solutions that are equally "close" we pick the one that is minimum length

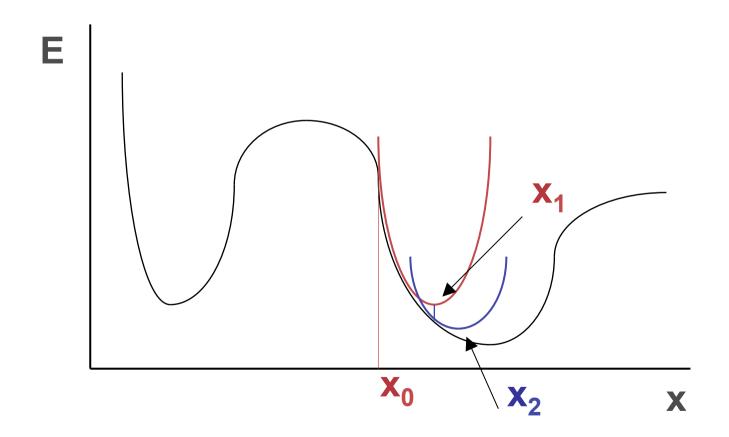
$$\mathsf{E} = (\mathsf{d}\text{-}\mathsf{F}(\mathsf{m}))^{\mathsf{T}}(\mathsf{d}\text{-}\mathsf{F}(\mathsf{m})) + \vartheta^2(\mathsf{m}^{\mathsf{T}}\mathsf{m})$$

This is called the "damped least squares" solution and is given by

$$G^{-1} = [G^{\mathsf{T}}G + \vartheta^2 I]^{-1}G^{\mathsf{T}}$$

Iterative least squares solution

The figure below gives a graphical illustration of how iterative least squares works:



Generalized Inverse Solution (I)

Another way of obtaining G⁻¹ is based on the singular value decomposition (SVD) of matrix G.

It can be shown that, in general, any matrix G can be decomposed according to

$$G = U \Lambda V^T$$

Where $U = [\mathbf{u}_1, ..., \mathbf{u}_N]$ is a base in the data space, $V = [\mathbf{v}_1, ..., \mathbf{v}_M]$ is a base in the parameter space, and Λ is a N x M matrix given by

$$\Lambda = \left[\begin{array}{cc} \Lambda_{\mathsf{P}} & 0 \\ 0 & 0 \end{array} \right]$$

where Λ_P is a pxp diagonal matrix, with p \leq M. The diagonal values λ_i are called the singular values.

Generalized Inverse Solution (II)

If we define $V=[V_P,V_0]$ and $U=[U_P,U_0]$, we can write that

$$G = U_{P}\Lambda_{P}V_{P}^{T}$$

so that

$$G^{-1} = V_p \Lambda_p^{-1} U_p^T$$

The difficult part is to choose a value for p, as singular values can be small but NOT necessarily zero. Options are:

- 1) We choose $\lambda^{-1} = \lambda/(\lambda^2 + \vartheta^2)^{-1}$. Then the SVD inverse is the damped least squares solution.
- 2) We choose $\lambda^{-1} = 0$, for λ small. Then the SVD inverse is called generalized inverse or natural solution.

Inversion of Ammon et al. (1990)

The inversion scheme developed by Ammon et al. (1990) is based on the "jumping" version of the iterative LSQ solution:

Creeping

$$\mathbf{d} = \mathbf{F}(\mathbf{m})$$

$$\mathbf{d} = \mathbf{F}(\mathbf{m}_0) + \nabla \mathbf{F}|_{\mathbf{m}_0} (\mathbf{m} - \mathbf{m}_0)$$

$$\delta \mathbf{y} = \nabla \mathbf{F}|_{\mathbf{m}_0} \delta \mathbf{m}$$

Jumping

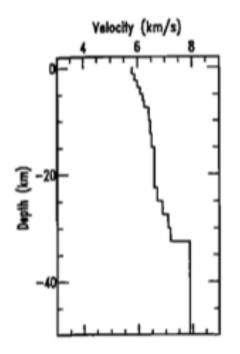
$$\mathbf{d} + \nabla \mathbf{F}|_{\mathbf{m}0} \mathbf{m}_0 = \mathbf{F}(\mathbf{m}_0) + \nabla \mathbf{F}|_{\mathbf{m}0} \mathbf{m}$$
$$\Delta \mathbf{d} + \nabla \mathbf{F}|_{\mathbf{m}0} \mathbf{m}_0 = \nabla \mathbf{F}|_{\mathbf{m}0} \mathbf{m}$$

LSQ Norm

$$E = ||\Delta \mathbf{d} - \nabla F|_{\mathbf{m}_0} (\mathbf{m} - \mathbf{m}_0)||^2$$

Over-parameterization & regularization

Velocity models are over-parameterized through a stack of many thin layers of constant thickness and unknown S-velocity. A smoothness constrain is needed to stabilize the inversion.



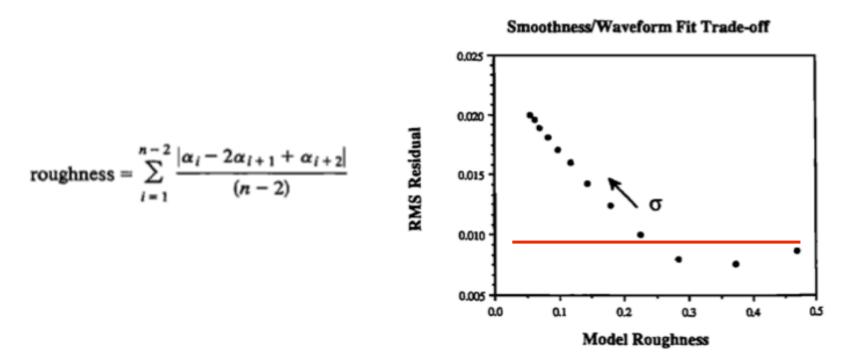
$$\begin{cases} \Delta \mathbf{d} + \nabla \mathbf{F} \ \mathbf{m}_0 = \nabla \mathbf{F}|_{\mathbf{m}0} \ \mathbf{m} \\ \mathbf{0} = \sigma \ \mathbf{D} \ \mathbf{m} \end{cases}$$

$$D \mathbf{m} = \begin{bmatrix} 1 - 2 & 1 & & & \\ & 1 - 2 & 1 & & & \\ & & & 1 - 2 & 1 \\ & & & \vdots & & \vdots \end{bmatrix}$$

$$E = || \Delta d - \nabla F (m - m_0) ||^2 + \sigma^2 || Dm ||^2$$

Choosing the smoothness parameter

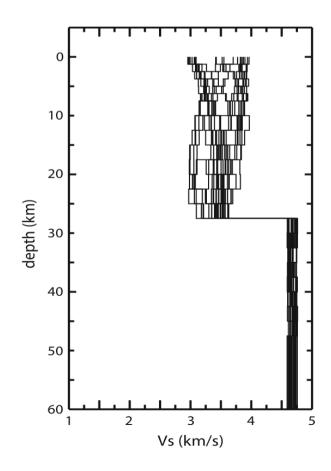
To determine the smoothness parameter σ a "preliminary" inversion is performed and a trade-off curve is built from the RMS error and the model roughness.

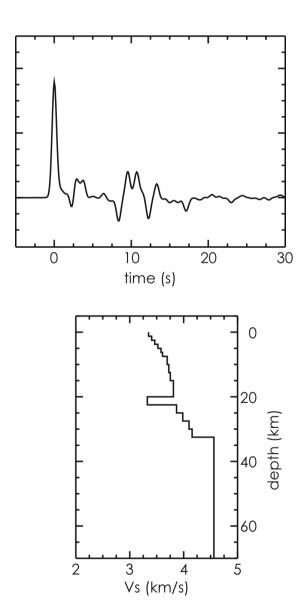


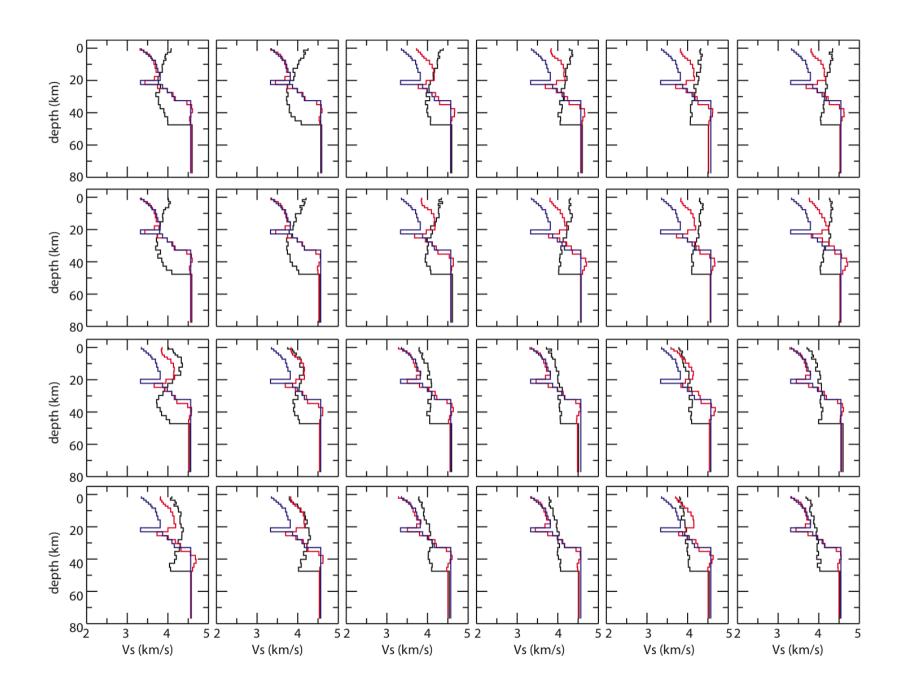
A value for σ is chose, for instance, from the noise level from the transverse RF.

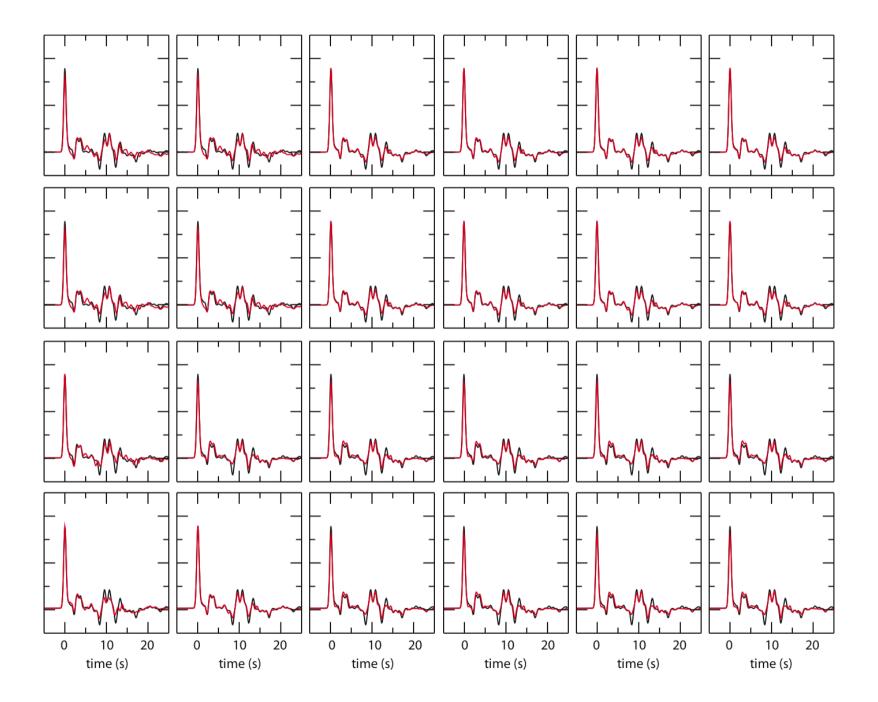
The non-uniqueness problem

Ammon et al. (1990) showed that the modeling of receiver function waveforms is non-unique.

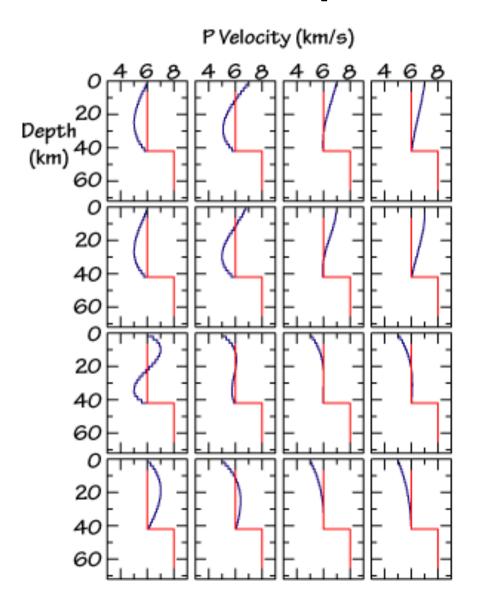




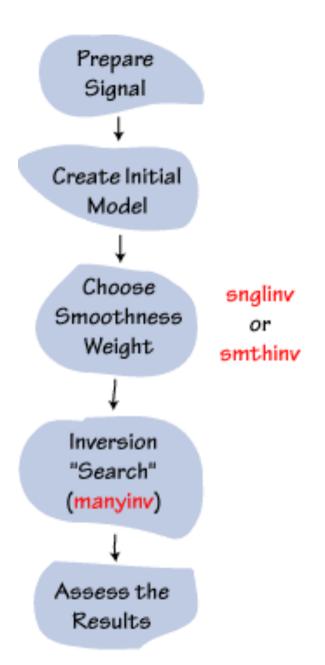




The perturbation scheme



- Many 'starting' models are obtained by perturbing an initial model.
- The perturbation scheme includes:
 - A cubic perturbation (up to a max value)
 - A random perturbation (up to a max %)
- Velocities above a cut-off value are not cubically perturbed.



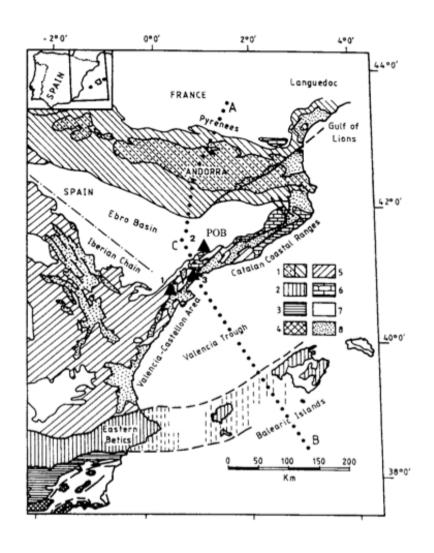
SUMMARIZING:

The inversion scheme proposed by Ammon et al. (1990) for the modeling of receiver functions is:

- 1) Construct an initial model with a stack of many thin layers.
- 2) Determine the smoothness parameter through a "preliminary" inversion.
- 3) Investigate the multiplicity of solutions by perturbing the initial model into many starting models.
- 4) Choose a model from *a priori* and independent information.

The receiver structure of the Ebre Basin

(Julià et al., BSSA, 1998)



- It's an foreland basin that formed during the Alpine orogeny.
- Filled with deposits from the adjacent mountain ranges.
- Highly non-uniform on the edges.
- Highly uniform along the central axis.

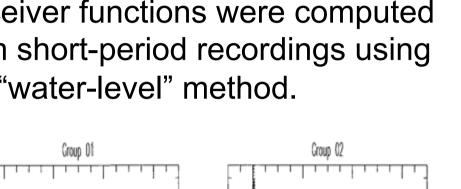
Computing receiver functions at POB

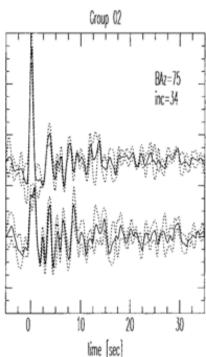
Receiver functions were computed from short-period recordings using the "water-level" method.

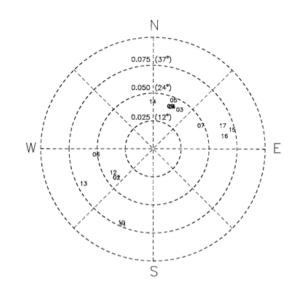
BAz=235

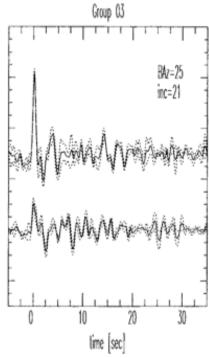
inc=19

time [sec]



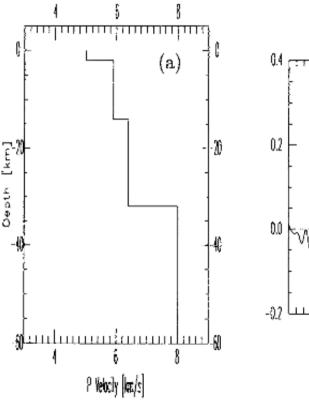


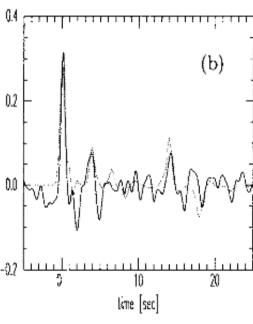




The starting model

The starting model was taken from the P-wave velocity model that the Catalan Geological Survey used to locate earthquakes.

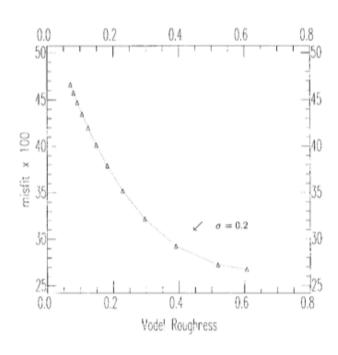


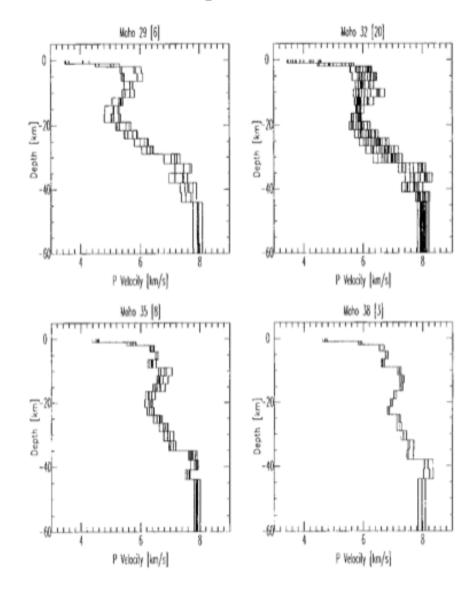


Smoothness and non-uniqueness

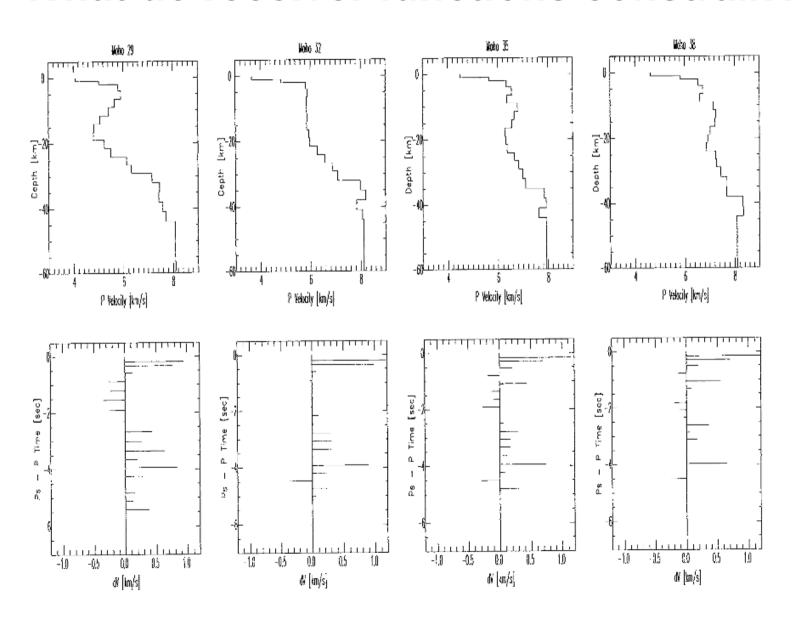
A smoothness parameter of 0.2 was chosen from the noise-level.

The resulting velocity models grouped into 4 families.



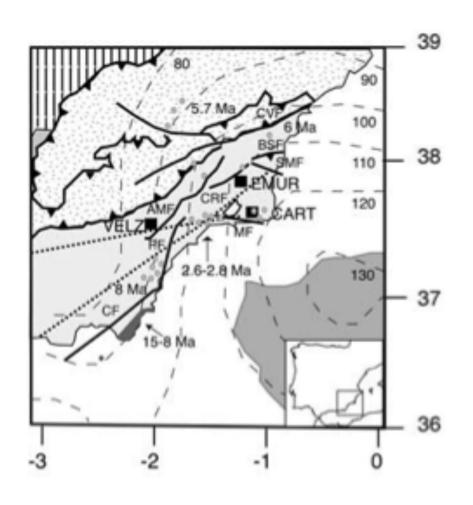


What do receiver functions constrain?

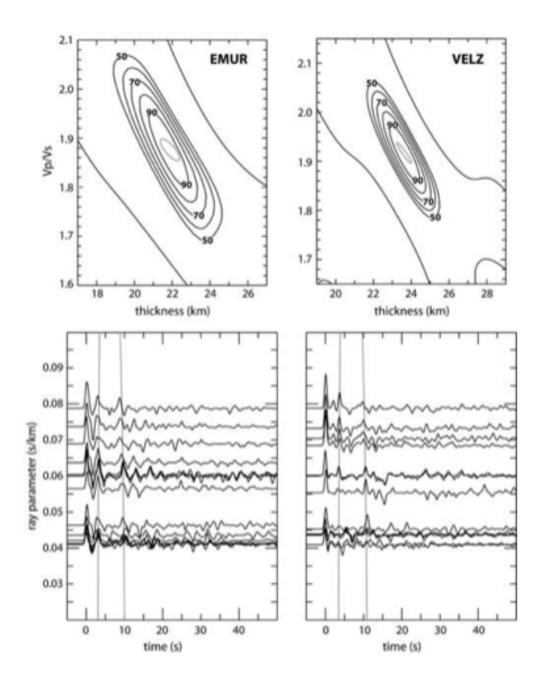


Seismic signature of intra-crustal magmatic intrusions in the Eastern Betics

(Julià et al., GRL, 2005)



- Bounded by the Palomares and Alhama de Murcia faults.
- Postulated as a structurally distinctive block.
- Characterized by high heat-flow values.
- Widespread strike-slip faulting.
- Neogene volcanism (2.6 - 2.8 Ma).

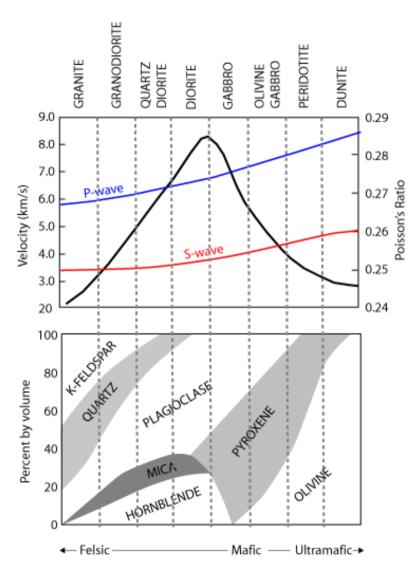


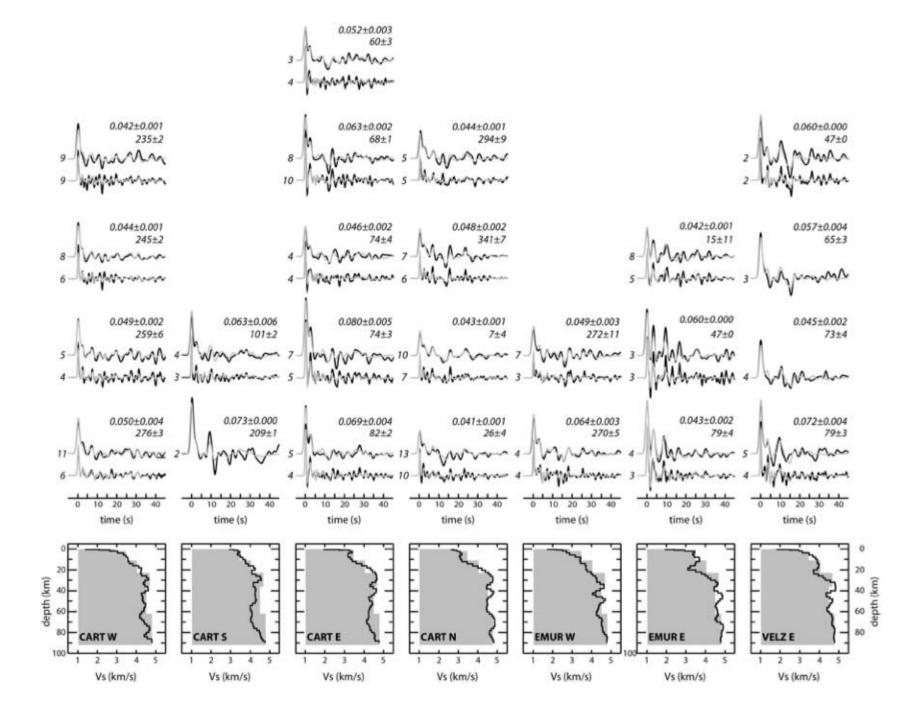
hk-stacking results

- Shallow depth for the interface, a bit over ~20 km.
- Very large Vp/Vs ratio,
 ~1.90 (σ ~0.31)
- Consistent with activesource profiling? (Vp ~6.3 km/s, h=~23 km)
- Or is there something else going on?

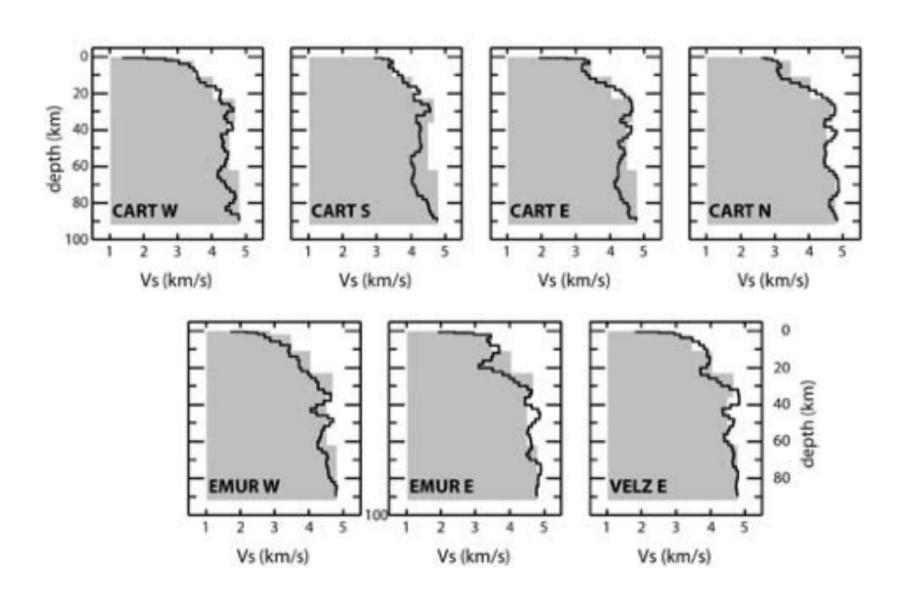
What does a large Vp/Vs ratio mean?

- The upper crust is made of granites and gneisses $(0.24 < \sigma < 0.26)$.
- The lower crust is generally more mafic $(0.26 < \sigma < 0.29)$.
- Large Vp/Vs (Poisson's) usually explained by
 - Mafic underplate
 - Fusió parcial





What do the inversion models reveal?



Summarizing ...

- Receiver function inversions are highly nonunique.
- What receiver functions constrain are:
 - Velocity contrasts across discontinuities
 - S-P travel times between the surface and the discontinuity.
- The scheme of Ammon et al. (1990) uses a stack of thin layers and requires smoothness constraints.
- Independent a priori information is necessary to choose among many competing models.