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Outline	


•  Introduction to Inverse Theory: 

•  Forward and inverse problems 
•  Iterative solution: LSQ and damped LSQ 
•  Generalized inverse 

•  Inversion of Receiver Functions: 
•  Method of Ammon et al. (1990). 
•  The non-uniqueness problem. 

•  Case Studies in Spain: 
•  Ebre basin (Julià et al., 1998) 
•  Neogene Volcanic Zone (Julià et al., 2005) 



Forward Problem / Inverse Problem	



•  Seismic location: 
•  Data: travel times 
•  Unknowns: hypocentral 

 coordinates and origin time. 
•  A priori information: station 
    locations and propagating 
    medium velocities.  

•  Forward problem: 
•  Predict travel times from known hypocentral location and 

origin time. 

•  Inverse problem: 
•  Obtain hypocentral location and origin time from observed 

travel times. 
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ti = t0 + Di/V 



Setting up the (forward) problem	



We define a vector of observations d and a vector of 
parameters m as: 

 d = (t1,t2,…,tN)T            m = (t0,x0,y0,z0)T 
so that 

                       d = F(m) 
where Fi(m) is 

     ti = t0 + (1/v) [(xi-x0)2+(yi-y0)2+(zi-z0)2]1/2 
 
Inverse theory provides means for finding an operator  
F-1(d), so that 

    m = F-1(d) 



Iterative solution	


The forward problem for seismic location is non-linear. 
An approach is to turn it linear by doing a Taylor expan-
sion around a trial solution m0 

           d ≈ F(m0) + ∇F|m0 ·(m-m0) 
and drop 2nd and higher order terms, so that 

                         Δd = G·Δm 
Where Δd=d-F(m0), Δm=m-m0, and 

                                ∂t1/∂t0   ∂t1/∂x0   ∂t1/∂y0   ∂t1/∂z0 
         G = ∇F|m0 =        :           :            :            : 
                                ∂tN/∂t0   ∂tN/∂x0   ∂tN/∂y0   ∂tN/∂z0 

If we can determine G-1, then mi+1 = mi+Δmi 



Classifying Inverse Problems	



F(m) 
RM RN 

The (linear) vector function d=F(m) maps the parameter 
space into a subspace of the data space. 

The ability of establishing an inverse mapping m=F-1(d) 
depends on the details of the forward mapping. 
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Mixed-determined case Underdetermined case 

Overdetermined case Ideal case 

Each vector d relates to one 
and only one vector m. 

There are multiple solutions. 
We must pick one. 

There is no exact solution, so 
we must choose one that is 
close enough. 

There are no exact solutions 
and many that are equally 
close. 



Least squares solutions	


In order to define “close” in the data space we need to 
introduce a metric. A popular choice is the L2 norm, 
where the “distance” E between vectors is 

       E = (d-F(m))T(d-F(m)) 
The “closest” solution is obtained by minimizing E and is 
given by 

            G-1 = [GTG]-1GT 
To choose among the multiple solutions that are equally 
“close” we pick the one that is minimum length 

                   E = (d-F(m))T(d-F(m)) + ϑ2 (mTm) 
This is called the “damped least squares” solution and is 
given by 

          G-1 = [GTG+ϑ2 I]-1GT 
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The figure below gives a graphical illustration of how 
iterative least squares works: 

Iterative least squares solution	





Generalized Inverse Solution (I)	


Another way of obtaining G-1 is based on the singular 
value decomposition (SVD) of matrix G.  
It can be shown that, in general, any matrix G can be 
decomposed according to 

             G = U Λ VT 
Where U = [u1,…,uN] is a base in the data space, V=[v1,
…,vM] is a base in the parameter space, and Λ is a N x M 
matrix given by 
 

   Λ =  
 
where ΛP is a pxp diagonal matrix, with p ≤ M. The diago-
nal values λi are called the singular values. 

ΛP  0 
0    0 



If we define V=[VP,V0] and U=[UP,U0], we can write that 

          G = UPΛPVP
T 

so that 

          G-1 = VPΛP
-1UP

T 

The difficult part is to choose a value for p, as singular 
values can be small but NOT necessarily zero. Options 
are:  
1) We choose λ-1 = λ/(λ2+ϑ2)-1.. Then the SVD inverse is 
the damped least squares solution.  
2) We choose λ-1 = 0, for λ small. Then the SVD inverse 
is called generalized inverse or natural solution. 

Generalized Inverse Solution (II)	





•  Creeping  
d = F(m) 
d = F(m0) + ∇F|m0  (m-m0) 
         δy = ∇F|m0 δm 

•  Jumping 
d + ∇F|m0 m0 = F(m0) + ∇F|m0 m  
     Δd + ∇F|m0 m0 = ∇F|m0 m 

•  LSQ Norm 
E = ||Δd - ∇F|m0 (m - m0)||2 

Inversion of Ammon et al. (1990)	


The inversion scheme developed by Ammon et al. (1990) 
is based on the “jumping” version of the iterative LSQ 
solution: 



       Δd + ∇F m0 = ∇F|m0 m 
                 0 = σ D m 

 
              1 -2  1            m1 
D m =         1 -2  1        m2 

                     :              : 

Velocity models are over-parameterized through a stack 
of many thin layers of constant thickness and unknown 
S-velocity. A smoothness constrain is needed to stabilize 
the inversion. 

Over-parameterization & regularization	



E = || Δd - ∇F (m-m0) ||2 + σ2 || Dm ||2 



To determine the smoothness parameter σ a “preliminary” 
inversion is performed and a trade-off curve is built from the 
RMS error and the model roughness. 

Choosing the smoothness parameter	



A value for σ is chose, for instance, from the noise level from 
the transverse RF. 



Ammon et al. (1990) showed that 
the modeling of receiver function 
waveforms is non-unique. 

The non-uniqueness problem	









The perturbation scheme	



•  Many ‘starting’ models are 
obtained by perturbing an 
initial model. 

•  The perturbation scheme 
includes: 
•  A cubic perturbation 

(up to a max value) 
•  A random perturbation 

(up to a max %) 
•  Velocities above a cut-off 

value are not cubically 
perturbed. 



SUMMARIZING:   
The inversion scheme proposed by 
Ammon et al. (1990) for the model-
ing of receiver functions is:  
1)  Construct an initial model with a 

stack of many thin layers. 
2)  Determine the smoothness para-

meter through a “preliminary” 
inversion. 

3)  Investigate the multiplicity of 
solutions by perturbing the initial 
model into many starting models. 

4)  Choose a model from a priori and 
independent information. 



The receiver structure of the Ebre Basin	


(Julià et al., BSSA, 1998) 

•  It’s an foreland basin that 
formed during the Alpine 
orogeny. 

•  Filled with deposits from 
the adjacent mountain 
ranges. 

•  Highly non-uniform on 
the edges. 

•  Highly uniform along the 
central axis. 



Receiver functions were computed 
from short-period recordings using 
the “water-level” method. 

Computing receiver 
functions at POB	





The starting model was taken from the P-wave velocity 
model that the Catalan Geological Survey used to locate 
earthquakes.  

The starting model	





A smoothness parameter of 
0.2 was chosen from the 
noise-level. 
The resulting velocity models 
grouped into 4 families. 

Smoothness and non-uniqueness	





What do receiver functions constrain?	





Seismic signature of intra-crustal magmatic 
intrusions in the Eastern Betics	



(Julià et al., GRL, 2005) 

•  Bounded by the Palo-
mares and Alhama de 
Murcia faults. 

•  Postulated as a struc-
turally distinctive block. 

•  Characterized by high 
heat-flow values. 

•  Widespread strike-slip 
faulting. 

•  Neogene volcanism 
(2.6 - 2.8 Ma). 



•  Shallow depth for the 
interface, a bit over 
~20 km. 

•  Very large Vp/Vs ratio, 
~1.90 (σ ~0.31) 

•  Consistent with active-
source profiling? (Vp 
~6.3 km/s, h=~23 km) 

•  Or is there something 
else going on? 

hk-stacking  
results	





After Christensen (1996) 

•  The upper crust is made 
of granites and gneisses 
(0.24 < σ < 0.26). 

•  The lower crust is 
generally more mafic 
(0.26 < σ < 0.29). 

•  Large Vp/Vs (Poisson’s) 
usually explained by 
•  Mafic underplate 
•  Fusió parcial 

What does a large Vp/Vs ratio mean?	







What do the inversion models reveal?	





•  Receiver function inversions are highly non-
unique. 

•  What receiver functions constrain are: 
•  Velocity contrasts across discontinuities 
•  S-P travel times between the surface and the 

discontinuity. 
•  The scheme of Ammon et al. (1990) uses a 

stack of thin layers and requires smoothness 
constraints. 

•  Independent a priori information is necessary 
to choose among many competing models. 

Summarizing …	




